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One needs to know the pore and pore-channel size distributions in considering micro- 
structures for porous materials. Mercury porometry is the most widely used, whose main ad- 
vantage is that it is simple to convert the measurements to the distributions. However, 
there are major disadvantages, both purely technological [I] and theoretical: the results 
for the distribution are dependent on the size of the specimen [2], while the unbounded 
cylindrical-pore model used in mercury porometry is an inadequate representation for many 
actual structures such as for granular media and ones with cavities [3]. In mercury poro- 
metry, one determines the volume of mercury entering the specimen as a function of pressure, 
which is interpreted as the mercury penetrating steadily smaller capillaries. No allowance 
is made for the fact that the pore space consists of pore subsystems and links differing 
considerably in scale, and consequently, the permeability in a given case at a given pres- 
sure is governed by the critical size of the linkage pores, but most of the volume of the 
injected mercury is in the localized pores, which can mean that the interpretation is in- 
correct. 

When one researches any process where the main part is delayed by the connecting capil- 
laries, one needs a method in which the information is provided by a quantity only slightly 
dependent on the sizes or even presence of the large-scale nodal pore subsystem. The pore- 
space structure in a cavity or granular medium requires one to abandon the infinite cylindri- 
cal-pore model as a physical representation. An alternative is the lattice model, which 
provides a better fit to the pore-space topology. The data can be provided not by measuring 
the volume of nonwetting mercury entering the specimen but the conductivity in different parts 
when the material is saturated with a wetting electrolyte under gravity. This enables one to 
eliminate the effects from the nodal pore subsystem. 

Sensitivity in Electroporometry for Pore Subsystems Differing in Scale: Infinite Cylin- 
drical Pore Model Applicable. If an initially untreated specimen is immersed at one end in a 
vessel containing a wetting electrolyte (Fig. I), the uptake decreases along the vertical, 
because the liquid rises in a vertical capillary having radiUs r(~) under gravity to a height 

= (2~ cos O)/(pgr (l))~ ( l )  

in which ~ is the surface tension, 9 the wetting angle, 0 density, and g the acceleration due 
to gravity. In general, the vertical capillary chains in the lattice model are isolated, but 
one can assume that apart from a coefficient of proportionality, the proportion of filled 
pores at height Z is determined by the critical radius r(~), which is related to s by (i). 
Then the conductivity in the vertical direction will be a function of the saturation and thus 
of the height, which can provide information on the size distribution. 

One measures the conductivity at heights {s in sufficiently narrow layers A~ i ~ ~i 
(Fig. la), which are such that the specimen can be taken as uniformly saturated within each 
part. We evaluate the conductivity in any part from the contributions from the two subsys u 
texas. Let the electrolyte have conductivity Oe, while the skeleton of the specimen has o s = 
0. The conductivity in the vertical direction will be governed by the vertically oriented 
chains of electrolyte-filled pores. One can correct for the cross links by means of a cor- 
rection factor of the order of one, which is unimportant for estimates. We consider a unit 
cube in an element. If d is the lattice half-width and • the proportion of vertical chains 
in unit volume filled by the electrolyte, the concentration of such chains on a cross section 
having unit area is 7Vs=~/(4~), with the links in series in each chain, so the conductivity ( ~ l  ~-~ 
in a vertical chain is ~ (j~__IR~) [R i is the resistance of link j in chain i, with Ns = 

4 

I/(2d) the number of links in a chain]. 
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We estimate the contribution from each subsystem to o i on the basis that the character- 
istic radius of the nodes is r b = d/2, while the connections are cylinders having character- 
istic radii rs << d and lengths Z ~ d. Then the resistances in the chain links are R s ~ 

( l /o~)  (d/r~,)~ Bb--~ (t/oe)(d/d2),, a n d  t h e  r a t i o  o f  t h e s e  i s  e = Rb/Bs,~ (rJd)" << t ,  s o  o~ ~ (B,)  

ecrU, from which we get an estimate for the conductivity of the material: 

N s 

% N ~ ~i ~ ~, (rsld)L (2)  
i = l  

We see from (2) that the conductivity for a specimen consisting of these subsystems with 
different scales is dependent only on the linkage resistances, so in electroporometry, one 
can transfer from a lattice model having bulky nodes to one with point ones, in which the 
volume, resistance, and filtration impedance of the nodes are zero. The parameters in such a 
lattice as regards electroporometry are determined by the size distribution for the linkage 
pores, while the radii for the different links in the capillary chains with any orientation 
are of the same order (this is a difference from chains containing nodes, where capillaries 
with differing scales linkup in each lattice period, r s ~ r b ~ d), which enables one to re- 
late the variable-radius capillaries to cylindrical ones having certain effective radii. 

We also make some simplifying assumptions: we take the lattice as a simple cubic one, 
with the field vector E collinear with the vertical lattice edges. With this orientation 
and lattice type, there are marked effects only from the vertical capillary chains (the trans- 
verse links have little effect on the current flow pattern because they are perpendicular to 
E). Here again one can use the infinite cylindrical pore approximation, which has much more 
basis for electroporometry than it does in the mercury case. That model enables one to solve 
the forward and inverse electroporometry problems in an explicit fashion. 

Let the pore space consist of vertical cylindrical pores having the radius distribution 
f(r). We derive a relation between the electrical conductivity o for a part of a specimen as 
a function of the height s on the one hand and the capillary radius distribution on the other 
(Fig. ib shows the measurement scheme). All the pores are connected in parallel, so 

(l) = X I = SNs~ ] (r) ~ (~/d) dr, 
i = 1  r i < r  ( l )  0 

where S is the cross-sectional area and n z the total number of filled pores at heightZ. 

The mean-square radius at height s is 

o (0 z 
g ~ 0 t o  g e t  <r2>t=o=llm'" ~. = j ] ( r ) r~dr .  

~">0 0 effgJ3" lV * 
0 

r ( t )  

<r2> l -  ~(l) Z _~ y ](r) r~dr. 
~ e ~ S  N s 

0 

We pass to the limit 

We consider X = <rSh/(r2>z=o, which can be expressed in terms of o(s and f(r): 

X =  l im 1~(/1 l] = /(r)r~dr/<r~>~=o" 
/-~oo 0 

(3) 
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Clearly, lim [o(/)/] = g0S (o 0 is the conductivity of the completely saturated specimen). 

Then X= o(~)/(ooS) has a one-to-one relationship to o(~) and is measurable. On the other 

hand, we differentiate (3) with respect to r(s and use the normalization f/(r)dr = 1 to get 
0 

t dX t dX dr (1). ( 4 )  
/ (r (1)) = r (1) ~ dF'(~) ~ (l)~ d~ (0  

The relation between r(~) and ~ is defined by (i), and we use this with the relation between 
X and o(s to convert to the variable s in (4): 

/(~) = ~ / t d ( ~  13/~l 2~d(~(l) z) dl ( G =  2? cos 0/flg). (5 )  
dl I]  dl 

Then one can measure o(s for a sequence of s and use (5) to recover the capillary ra- 
dius distribution. 

If we abandon strict constraints on the lattice type and orientation, which are taken 
as arbitrary, the infinite cylindrical pore approximation becomes inapplicable, and one must 
use the lattice model. However, this involves major difficulties, and only early steps have 
so far been made in that direction. It is quite complicated even to solve the direct case 
(calculating macroscopic characteristics with a given size distribution), and it has so far 
been done mainly numerically [4-6]. There is no discussioH in the literature of the inverse 
treatment for the lattice model, i.e., recovering the size distribution from macroscopic 
characteristics as functions of the variable external conditions. 

Direct Electroporometry Treatment for any Capillary Structure. One approach is to con- 
sider the lattice model approximately to obtain an analytic solution in the forward treatment 
and thus get an analytic relation between the size distribution and certain characteristics, 
which can then be inverted at least by some numerical method. 

We first consider the first part of this: deriving an approximate analytic solution. We 
assume that the measurements are made as in Fig. la and also that only capillaries having 
radii less than the critical r(s are filled at a given s with the latter defined by (I). 
Then we take the radius distribution as known and the system as infinite because the speci- 
men's dimensions are much larger than the lattice period, and thus the conductivity can be 
derived. 

This is a classical problem in percolation theory, namely calculating the conductivity 
in a lattice with links (the conductivity in an individual capillary is related to the ra- 
dius by q = ae~r2/d). Only numerical methods can be used, apart from the case of a classical 
Bethe lattice [7], so one cannot apply that technique in the inverse treatment. One needs an 
analytic relation between o(Z) and the size distribution, which can however be obtained ap- 
proximately in the effective-mediummodel [7, 8], which gives approximate results in satis- 
factory agreement with exact percolation calculations. There are appreciable discrepancies 

r 

(about 20%) only near the penetration thresholdpc=~/(r)dr (r cistheradiuscorresponding to that 
0 

threshold), which is a structural constant governed by the lattice type. Therefore, if one 
r(l) 

assumes that the o(s measurements are not carried to an excessive height, such that S/(r) d r ~  
1.2Pc, one is correct in using that model. 0 

The basis of the effective-medium model is that the random-resistance network is re- 
placed by a network containing identical effective resistors subject to the condition that 
the conductivity of the entire medium as a whole is unaltered. Then the conductivity qm in 
one link in the effective medium is [8] defined by 

qm--q 
(q) (z/2 -- 1) qm + q dq = 0. (6 )  

0 

Here  f 0 ( q )  i s  t h e  l i n k  c o n d u c t i v i t y  d i s t r i b u t i o n ,  w h i l e  z i s  t h e  number o f  n e a r e s t  n e i g h b o r s  
f o r  t h e  l a t t i c e  t y p e .  In  what  f o l l o w s ,  i t  i s  c o n v e n i e n t  t o  c o n v e r t  f rom (6)  f o r  qm t o  t h e  
a n a l o g o u s  e x p r e s s i o n  f o r  r m. We i n c o r p o r a t e  t h e  r e l a t i o n  be tween  t h e  c a p i l l a r y  c o n d u c t i v i t y  
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and radius and use the equality of the random quantities with the functional relationship 

i r(l) r 2 r 2 
1 f (r) 3r + / (r) (z/2 --  i) r~ + r 2 [ 9 ] :  f 0 ( q ) d q  = f ( r ) d r ,  so  (6 )  can  be  r e w r i t t e n  as  ~ d r = O ,  

r(l) o 

f r o m  wh ich  t h e  f ( r )  n o r m a l i z a t i o n  c o n d i t i o n  g i v e s  us  t h e  f i n a l  e q u a t i o n  f o r  rm: 
r(1) 
y / (r) dr = 2. ( 7 )  

zr  2 

o ( z /2~ l )  r ~ + r  2 

For  d e f i n i t e n e s s ,  we p u t  z = 6 i n  t h e  s u b s e q u e n t  c a l c u l a t i o n s ,  wh ich  c o r r e s p o n d s  t o  a 
s i m p l e  c u b i c  l a t t i c e .  Then (7 )  becomes  

r(O 
! r2 

~--  ~ l ( r ) d r =  t (8) 
2r~ + r 

f r o m  wh ich  we s e e  f o r  e x a m p l e  t h a t  Pc ,  wh ich  i s  d e f i n e d  in  t h i s  m o d e l ,  i s  1 /3  f o r  t h i s  l a t -  
t i c e  type. The exact value found from percolation theory is i/4. To obtain a reliable test 
for using this model, we take Pc = 1/3, and then (8) is applicable to describing this lattice 
for the range r' < r < &, where r' is defined by 

r B 

~ / ( r ) d r = 0 , 4 .  (9 )  
0 

The capillary radius distribution is then used with (8) and (I) to derive r m (1) and 
consequently 

[ r  m (/)]2 S (10)  
o (1) = a e n  L---d-- j ~- 

(for simplicity, we take the measurement intervals As i as identical and equal to hs which 
solves the direct electroporometry case for this lattice model. 

Inverse Electroporometry Treatment: Analytical and Numerical Approaches. We now consider 
the inverse electroporometry treatment for a given lattice model. We assume that o(s has 
been measured at k heights satisfying (9), from which we derive the size distribution; a(s 
can readily be converted to the effective radii rm(r(s from (i) and (I0), which involves 
solving an integral Volterra equation of the first kind, which is (8) in terms of the unknown 
f(r). A difficulty is that we do not know the analytic dependence of the kernel here as a 
function of the upper limit, or rather rm(r(s appearing in the kernel has to be determined 
from experiment and therefore always contains errors. In that case, deriving the solution to 
(8) is an ill-posed problem and classical methods are not applicable. To derive the size 
distribution from (8), one must use some regularized method stableunder small errors in the 
input data. 

One possibility is to reduce (8) to linear algebraic equations to be solved by regular- 
ization. Here we convert to those equations by means of approximating functions, which are 
based on expanding the size distribution in terms of some linearly independent functions. 
As usual the a priori information on the size distribution is very limited; it is difficult 
to give preference to any one approximating-function system over another. Then one can use 
Weierstrass's theorem on the expansion of a function as a polynomial [i0]: 

1(0= ~ ai r~. (11)  

General considerations show that f(r) is different from zero only in the range [r I, r2], in 
which r I is theminimal capillary radius and r 2 the maximal one. One retains a finite number 
of terms in (ii), and substitution into (8) gives 

t ( k = t ,  . m), (12)  aiF~h = T " "' 
i = - - n  

in which 
(r(Z))~ 

Fib  ~ Y r2+i o + 2 dr. 
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Direct use of (II) will give a system containing an infinite number of unknowns, which does 
not have a unique solution. 

For m > 2n + i, (12) is an overdefined system of algebraic equations for the unknown 
coefficients {ai} having an inaccurately specified matrix Fik. Regularization [ii, 12] can 
be used to derive the normal pseudosolution, where the regularization parameter should be 
chosen to match the input-data errors. However, one cannot evaluate the error in using the 
lattice model to describe the pore space structure exactly, so in fact the error in speci- 
fying Fik is unknown and one cannot emply the usual discrepancy condition to choose the 
optimum regularization parameter. Instead, one can use a quasioptimality criterion or ratio 
[ii], as these do not require a knowledge of the input-data errors. 

This has been tested on recovering a known distribution: 

rlr 2 I 
{ r 2 - - r , p '  r 1~<,'~<r2, / (~) 

= ( q  = 1, r 2 = t l ) .  ( 1 3 )  ! 
tO, r > r 2 ,  r < q  

The Newton-Raphson method was used to solve (8) and determine {(rm((r(s } in the forward 
treatment from (13) for f(r) and the given set of upper limits {(r(s From (9) we first 
determined the threshold r' for using the model and all the (r(s k were then selected in the 
[r', r 2] segment. 

The resulting rm((r(s was used as input for the inverse treatment by solving (12) by 
regularization with a quasioptimality criterion. The approximating function system decreased 
as the radius increased: 

(n 

/app (r) = ~ '  q~r<<'r2 '  

~0, r>r2 ,  r < r l .  

supplemented (12) with an equation corresponding to the normalization condition~aiF~,~+1-- We 

1 F i , ~ + l =  ~ d  . 
r 1 

Figures 2 and 3 show the inverse treatment to recover (13) [the dashed lines show the 
true f(r) curve]. In the first case (Fig. 2), exact input data were used to solve the ini- 
tial problem, while in the second (Fig. 3), the {(rm)k} were corrupted with about 1% errors 
when the direct problem had been solved. If the approximating-function system is properly 
chosen and the input errors are small, the distribution is recovered accurately. 

To examine the effects from errors due to a poorly fitting approximating-function system, 
we recovered the distribution f(r) = 6(r 2 - r)(r - rl)/(r = - rl) 3, r I = I, r 2 = 4 with the 
previous lapp(r). 

Figure 4 shows the results (the dashed line shows the exact distribution). Although on 
the whole the distribution is recovered fairly well, it is in principle impossible to obtain 
a fairly close approximation to the exact distribution over a finite interval, so considerable 
deviations occur. If lapp(r) is to be chosen to fit well, one thus needs additional a priori 
information on f(r). One can then expect high accuracy in recovering f(r), and the result 
can be represented analytically. If on the other hand the condition for f(r) as an analytic 
expression is not obligatory and one can instead represent f(r) as a graph, one can adopt the 
following procedure. 

The integral on the left in (8) is replaced by an integral sum in accordance with some 
quadratic formula. For example, we can divide up the interval [rl, r2] with the net {r i = 
ri- I + h, h = (r 2 - rl)/(n + i), i = I, .... n} and use the trapezium formula to get 

ih 
~__~/iA~h = t (14) 

7' {=i 
in which ( r~ 

I 4+2(r~)~' t < i < i h ,  
f ~ = / ( r d ;  A i a = {  I q (,'i h = (r (/))~). 

2 2 (rm) h 
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Then (14) can be solved by regularization as above, which gave values for {f(ri) } as a 
set of Points {ri}. Figure 5 shows the inverse solution for the distribution (dashed line) 
based on (14). 
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